Nucleosome positioning signals in genomic DNA.
نویسندگان
چکیده
Although histones can form nucleosomes on virtually any genomic sequence, DNA sequences show considerable variability in their binding affinity. We have used DNA sequences of Saccharomyces cerevisiae whose nucleosome binding affinities have been experimentally determined (Yuan et al. 2005) to train a support vector machine to identify the nucleosome formation potential of any given sequence of DNA. The DNA sequences whose nucleosome formation potential are most accurately predicted are those that contain strong nucleosome forming or inhibiting signals and are found within nucleosome length stretches of genomic DNA with continuous nucleosome formation or inhibition signals. We have accurately predicted the experimentally determined nucleosome positions across a well-characterized promoter region of S. cerevisiae and identified strong periodicity within 199 center-aligned mononucleosomes studied recently (Segal et al. 2006) despite there being no periodicity information used to train the support vector machine. Our analysis suggests that only a subset of nucleosomes are likely to be positioned by intrinsic sequence signals. This observation is consistent with the available experimental data and is inconsistent with the proposal of a nucleosome positioning code. Finally, we show that intrinsic nucleosome positioning signals are both more inhibitory and more variable in promoter regions than in open reading frames in S. cerevisiae.
منابع مشابه
Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals
The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our underst...
متن کاملHydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning
Nucleosomes are the most abundant protein-DNA complexes in eukaryotes that provide compaction of genomic DNA and are implicated in regulation of transcription, DNA replication and repair. The details of DNA positioning on the nucleosome and the DNA conformation can provide key regulatory signals. Hydroxyl-radical footprinting (HRF) of protein-DNA complexes is a chemical technique that probes nu...
متن کاملNucleosome Positioning
Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping has been performed in a wide range of ...
متن کاملRole of 10-11 bp periodicities of eukaryotic DNA sequence in nucleosome positioning
10-11bp repeating patterns of the particular dinucleotides were suggested in positioning nucleosomes in eukaryotes. In order to assess the role, the 10-11bp periodicities of the dinucleotides were examined both in human well-positioned nucleosome DNA sequences and in promoter DNA sequences of eight species. Our results indicated that the periodical occurrence of the particular dinucleotides cor...
متن کاملExtrinsic and intrinsic nucleosome positioning signals
In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2007